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ABSTRACT
Due to the ease with which convincing digital image forgeries
can be created, a need has arisen for digital forensic techniques
capable of detecting image manipulation. Once image alterations
have been identi ed, the next logical forensic task is to recover as
much information as possible about the unaltered version of image
and the operation used to modify it. Previous work has dealt with
the forensic detection of contrast enhancement in digital images.
In this paper we propose an iterative algorithm to jointly estimate
any arbitrary contrast enhancement mapping used to modify an
image as well as the pixel value histogram of the image before
contrast enhancement. To do this, we use a probabilistic model of an
image’s pixel value histogram to determine which histogram entries
are most likely to correspond to contrast enhancement artifacts.
Experimental results are presented to demonstrate the effectiveness
of our proposed method.

Index Terms— Digital Forensics, Contrast Enhancement

I. INTRODUCTION

Over the past several years, digital imaging devices ranging from
cameras integrated into cellular phones to high end digital SLRs
have become widely available. This fact, coupled with the rise
of digital communication technology, has caused digital images to
become ubiquitous in modern society. News media organizations
routinely integrate digital images into their reporting. Governmen-
tal, judicial, and military institutions rely on digital images to make
critical policy and legal decisions. Because of this, it has become
very important to verify the authenticity of digital images, which
can be easily manipulated using graphics editing software.
When image processing operations are applied to digital images,

they often leave behind distinct traces or intrinsic ngerprints.
These intrinsic ngerprints are evidence of image manipulation
and can be leveraged to determine which operations were used to
modify an image. Digital forensic techniques have been proposed
to identify several forms of image tampering such as double
JPEG compression [1], [2] and image rotation and resizing [1].
Other techniques identify image forgeries using device speci c
ngerprints such as color lter array patterns [3] or noise features
[4]. After manipulation has been identi ed, the next forensic task is
to determine as much information as possible about the unaltered
image and the operation used to modify it.
In our previous work, we identi ed the intrinsic ngerprints of

contrast enhancement operations and used them to identify contrast
enhanced images [5]. In this paper, we present an iterative method
to jointly estimate the contrast enhancement mapping used to mod-
ify an image as well as the image’s pixel value histogram before
contrast enhancement. Our method requires no side information and
makes no assumptions on the form of the contrast enhancement
mapping aside from monotonicity. This algorithm is more general
than previous work such as [6], which assumes that the contrast
enhancement mapping can be described by a parametric equation
which is known to the forensic examiner.
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Fig. 1. Top: Typical image captured by a digital camera. Bottom: Pixel
value histogram of the image shown above.

II. SYSTEM MODEL

For any digital image, a normalized histogram h of its pixel val-
ues can be computed such that each histogram value h(x) ∈ [0, 1]
represents the relative frequency of a pixel value x. Because most
images vary in their origin and content, their histogram statistics
will vary as well. For images created by using a digital camera to
capture a real world scene, however, we have observed that their
pixel value histograms typically conform to a smooth envelope, as
can be seen in Fig. 1. This phenomenon is caused by many factors,
including complex lighting and shading environments, electronic
noise present in a digital camera’s CCD sensor, and the observation
that most real world scenes consist of a continuum of colors [5].
Because no notion of smoothness exists for discrete functions

such as histograms, we instead describe the pixel value histograms
of these image as interpolatably connected. We de ne an interpo-
latably connected histogram as one in which an approximation of
the histogram value at a particular pixel value x′ can be obtained
by interpolating h(x′) given all other histogram values using a
smoothing spline. We denote this approximated value as ĥ(x′). Fig.
2 shows an approximation of the pixel value histogram displayed
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Fig. 2. Approximation ĥ of the histogram shown in Fig. 1.

Fig. 3. Distribution of ε values calculated from the histogram h shown in
Fig. 1 and its approximation ĥ shown in Fig. 2

in Fig. 1, where each approximated value has been calculated in
the manner described above. Though the histograms of computer
generated images may not have this property, it is unlikely that such
images would undergo contrast enhancement since their contrast
properties can be controlled during the image’s creation. As a result,
we only consider images captured using a digital camera in this
work.
We model the relationship between a histogram value and its

smoothing spline approximation using the formula

h(x) = (1 + ε)ĥ(x), (1)

where the term ε is a random variable which takes into account
approximation error. We choose a multiplicative error model instead
of an additive one to account for the fact that large differences
between h and ĥ are more probable for large values of ĥ. After ob-
serving the distribution of ε values, which can be calculated from a
histogram and its approximation using the formula ε = h(x)−ĥ(x)

ĥ(x)
,

we model the distribution of the multiplicative error term as

P (ε = q) = λ

2−e−λ
e−λ|q|

1(q ≥ −1) (2)

where 1(·) denotes the indicator function. The validity of this
model distribution can be seen in Fig. 3, which shows the dis-
tribution of ε values calculated from the histogram and histogram
approximation shown in Figs. 1 and 2 respectively, as well as the
tted model distribution.

III. EFFECTS OF CONTRAST ENHANCEMENT
When a contrast enhancement operation is applied to a digital

image, its pixel values undergo a nonlinear mapping. Letting P =
{0, . . . , 255} denote the set of allowable pixel values, each pixel
value x ∈ P in the unaltered image is mapped to a pixel value
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Fig. 4. Pixel value histogram of the image shown in Fig. 1 after contrast
enhancement has been applied.

y ∈ P in the contrast enhanced image using the mapping function
m, such that

y = m(x). (3)

To exclude simple reorderings of the pixel values, we assume that
m is monotonically increasing.
Because contrast enhancement alters the pixel values of an

image, its pixel value histogram will be affected as well. The
histogram hY (y) of pixel values in the contrast enhanced image can
be written in terms of the unaltered image’s pixel value histogram
hX(x) using the equation

hY (y) =
∑
x∈P

hX(x)1(m(x) = y). (4)

This equation indicates that every value of hY must equal either
a single value of hX , a sum of distinct hX values, or zero. As
a consequence, impulsive peaks will occur in hY at y values to
which multiple x values were mapped. Similarly, gaps will occur
in hY at y values to which no x values were mapped. These
peaks and gaps, which can be clearly seen in Figure 4, serve
as contrast enhancement ngerprints that can be used to identify
contrast enhancement [5].

IV. ESTIMATION OF THE CONTRAST ENHANCEMENT
MAPPING AND THE UNALTERED HISTOGRAM

Once an image has been identi ed as contrast enhanced, an
estimate of the contrast enhancement mapping used to modify the
image as well as an estimate of the unaltered image’s pixel value
histogram can be jointly obtained through an iterative process. In
this section, we describe this iterative process in detail. To aid the
reader, we have included Fig. 5 which shows an example of our
proposed algorithm over multiple iterations. The histogram entries
in this example have been uniquely color coded so that they can be
tracked across each iteration. When multiple histogram entries share
a common color in iterations 1 and 2, it is because the estimate
of the contrast enhancement mapping at that iteration indicates
their corresponding pixel values are mapped to the same contrast
enhanced pixel value.
We de ne g(k)(x) as the kth estimate of the unaltered image’s

histogram. This estimate is initialized by setting g(0) equal to
contrast enhanced image’s histogram hY . Each iteration begins by
searching for the entry in g(k)(x) most likely to correspond to the
sum of multiple entries of the unaltered image’s histogram hX . This
is equivalent to nding the pixel value x

(k)
∗ present in the contrast

enhanced image that is most likely to be one to which multiple un-
altered pixel values were mapped. To do this, we establish a test set
of pixel values that could potentially be x

(k)
∗ . Because pixel values

whose estimated histogram value are zero cannot be x
(k)
∗ , nor can
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any pixel that maps to a past value of x∗, we de ne the test set
at the kth iteration as T (k) = {x|x ∈ P, g(k)(x) �= 0, x /∈ X(k)}
where X(k) is the set of pixel values that map to previous values
of x∗. The set X(k) is initialized as the null set and an update rule
for X(k) is given later in (11).
Since nding x

(k)
∗ is equivalent to nding the entry of g(k) least

likely to correspond to a single entry in the unaltered histogram
hX , we may rephrase our problem as

x(k)
∗ = arg min

x∈T (k)
P (hX(x) = g(k)(x)). (5)

If we temporarily assume that the histogram approximation ĥ is
known, we may use (1) and (2) to write

P
(
hX(x) = g(k)(x)

)
= P

(
ε = g(k)(x)−ĥ(x)

ĥ(x)

)

= λ

2−e−λ
e
−λ

∣∣∣∣∣ g(k)(x)−ĥ(x)

ĥ(x)

∣∣∣∣∣
1

(
g(k)(x)−ĥ(x)

ĥ(x)
≥ −1

)
, (6)

therefore x
(k)
∗ will be the value of x ∈ T (k) which maximizes∣∣∣ g(k)(x)−ĥ(x)

ĥ(x)

∣∣∣ such that g(k)(x)−ĥ(x)

ĥ(x)
≥ −1. Since it is unlikely

that ĥ is known, we approximate it with ĝ(k), where ĝ(k)(x)
is determined by using a smoothing spline to interpolate the
value of g(k)(x) given {g(k)(x′)|x′ ∈ T, x′ �= x}. Using this
approximation, the value of x

(k)
∗ is determined according to the

formula

x(k)
∗ ≈ arg max

x∈T (k)

∣∣∣ g(k)(x)−ĝ(k)(x)

ĝ(k)(x)

∣∣∣1(
g(k)(x)−ĝ(k)(x)

ĝ(k)(x)
≥ −1

)
.

(7)
The function to be maximized in (7) is nonconcave, therefore x

(k)
∗

must be found using an exhaustive search. Fortunately, this search is
not prohibitively time consuming due to the relatively small number
of elements in T (k).
Once x

(k)
∗ has been determined, the estimate of the contrast

enhancement mapping, denoted by m(k), can be updated. Before
the rst iteration, m(0) is initialized such that m(0)(x) = x. To
update m(k) we rst estimate r, the number of unaltered pixel
values mapped to x

(k)
∗ . By assuming that the histogram value of

each pixel value mapped to x
(k)
∗ is ĝ(k)(x

(k)
∗ ), we can obtain r

using the equation

r = round

(
g(k)(x

(k)
∗ )

ĝ(k)(x
(k)
∗ )

)
. (8)

Because the contrast enhancement mapping is monotonically in-
creasing, it must preserve the pixel value ordering. This implies that
the set of pixel values mapped to x

(k)
∗ must lie either immediately

above or below x
(k)
∗ . Furthermore, since a zero is introduced

somewhere into the pixel value histogram by each pixel value
mapped to x

(k)
∗ , we determine which pixel values were mapped to

x
(k)
∗ by counting the number of zeros in g(k) both above and below

x
(k)
∗ . We de ne these counts as n+ =

∑
x>x

(k)
∗

1(g(k)(x) = 0)

and n− =
∑

x<x
(k)
∗

1(g(k)(x) = 0).
If n+ ≥ n−, we assume that the r pixel values immediately

greater than x
(k)
∗ are mapped to x

(k)
∗ and that all pixel values greater

than x
(k)
∗ +r are shifted by the mapping accordingly. Precisely, we
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Fig. 5. Example of our estimation algorithm running across several
iterations. Histogram entries are initially uniquely color coded so that they
can be tracked across each iteration. Histogram entries share a common
color in iterations 1 and 2 when the current contrast enhancement estimate
indicates that their corresponding pixel values will be mapped to the same
output pixel value. The histogram values of these entries are estimated in
accordance with our algorithm.

update the mapping in this case according to the equation

m(k+1)(x) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(k)(x) x < x
(k)
∗

x
(k)
∗ x

(k)
∗ ≤ x < x

(k)
∗ + r

m(k)
(
x +

∑x+

l=x 1(g(k)(l) = 0)
)

x
(k)
∗ + r ≤ x ≤ x+

m(k)(x) x > x+

(9)

where x+ is the location of the rth zero in g(k) counting up from
x

(k)
∗ . Similarly, if n+ < n− we assume that the r pixel values
immediately less than x

(k)
∗ are mapped to x

(k)
∗ and that the pixel

values less than x
(k)
∗ − r are shifted accordingly such that

m(k+1)(x) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(k)(x) x < x−

m(k)
(
x −

∑x

l=x
−

1(g(k)(l) = 0)
)

x− ≤ x ≤ x
(k)
∗ − r

x
(k)
∗ x

(k)
∗ − r < x < x

(k)
∗

m(k)(x) x > x
(k)
∗

(10)

where x− is the location of the rth zero in g(k) counting down
from x

(k)
∗ .

After the estimate of the contrast enhancement mapping is
updated, the set X is updated using the equation

X(k+1) = {x|m(k+1)(x) ∈ (X(k) ∪ x(k)
∗ )}. (11)
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Fig. 6. Top: Unaltered pixel value histogram and its estimate. Bottom:
Contrast enhancement mapping and its estimate.

For all pixel values not in the set X(k+1), the estimate of the
unaltered pixel value histogram is updated by

g(k+1)(x) =
∑

l

g(0)(l)1(m(k+1)(l) = x). (12)

The value of g(k+1) is then interpolated at pixel values in the set
X(k+1), and appropriately normalized such that

g(k+1)(x) = ĝ(k+1)(x)
g(0)(m(k+1)(x))∑

t|m(k+1)(t)=m(k+1)(x) ĝ(k+1)(t)
. (13)

The iteration is terminated when either the maximum value of∣∣∣ ĝ(k)(x)−g(k)(x)

ĝ(k)(x)

∣∣∣ falls below a preset threshold or when no zeros
remain in g(k).

V. RESULTS
To test the performance of our proposed algorithm, we applied it

to the contrast enhanced pixel value histogram shown in Fig. 4. The
resulting estimate of the unaltered pixel value histogram is shown
in Fig. 6 along with the true unaltered pixel value histogram. When
we compare the estimated histogram to the true one, we nd very
few differences between the two. Estimation errors occur primarily
in regions where the unaltered histogram’s st difference changes
values abruptly. The bottom image in Fig. 6 shows the estimate
of the contrast enhancement mapping used to modify the image.
This is plotted along with the true contrast enhancement mapping
y = 255( x

255
)γ , which corresponds to the gamma correction with

γ = 0.8. Our algorithm was able to perfectly estimate this contrast
enhancement mapping.
To demonstrate our algorithm’s ability to operate on an image

modi ed by a nonstandard form of contrast enhancement, we used
it to obtain estimates of the unaltered histogram and contrast
enhancement mapping from the pixel value histogram displayed
at the bottom right of Fig. 7. The contrast enhancement mapping
used to modify the image is shown at the bottom left of Fig. 7
along with our estimate of the mapping. The top image in Fig.
7 shows the pixel value histogram of the image before contrast
enhancement as well as our estimate of the unaltered histogram.
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Fig. 7. Top: Unaltered pixel value histogram and its estimate. Bottom Left:
Contrast enhancement mapping and its estimate. Bottom Right: Pixel value
histogram after contrast enhancement.

These results indicate that our algorithm is capable of achieving
accurate mapping and histogram estimates from images modi ed
by a large class of contrast enhancement operations not considered
in [6].

VI. CONCLUSION
In this paper, we proposed an iterative algorithm to jointly

estimate an image’s unaltered pixel value histogram as well as the
contrast enhancement mapping used to modify the image given only
a contrast enhanced version of the image. We used a probabilistic
model of an image’s histogram to identify the histogram entries
most likely to correspond to contrast enhancement artifacts. We
then used this model along with knowledge of how contrast
enhancement modi es an image’s histogram to obtain our unaltered
histogram and contrast enhancement mapping estimates. Simulation
results indicate that our algorithm is capable of providing accurate
estimates even when nonstandard forms of contrast enhancement
are applied to an image.
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