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ABSTRACT
Digital images have seen increased use in applications where their
authenticity is of prime importance. This proves to be problematic
due to the widespread availability of digital image editing software.
As a result, there is a need for the development of reliable techniques
for verifying an image’s authenticity. In this paper, a blind forensic
algorithm is proposed for detecting the use of global contrast en-
hancement operations to modify digital images. Furthermore, a sep-
arate algorithm is proposed to identify the use of histogram equal-
ization, a commonly implemented contrast enhancement operation.
Both algorithms perform detection by seeking out unique artifacts
introduced into an image’s histogram as a result of the particular op-
eration examined. Additionally, results are presented showing the
effectiveness of both proposed algorithms.

Index Terms— Multimedia forensics, blind forensics, contrast
enhancement, histogram equalization.

1. INTRODUCTION

In recent years, digital images have come to play an important role
in news media, law enforcement, and military applications where
their authenticity is of prime importance. This proves to be prob-
lematic due to the widespread availability of digital image editing
software. In the past, extrinsic methods such as semi-fragile digital
watermarking have been proposed as a means to detect evidence of
image alterations [1]. These means of image authentication are lim-
ited by the requirement that a digital signature must be inserted into
an image by a trusted source before any alterations occur. However,
in many practical applications either no signature has been inserted,
or the source of the signature may not be trusted. As a result, there is
an increasing need for forensic methods to identify image alterations
without relying on the insertion of an extrinsic signature.

Blind forensic methods, or methods that make no use of outside
information about an image or its history, provide a solution to this
problem. These methods operate under the premise that the only in-
formation available is the image of unknown authenticity itself [2].
Evidence of image alterations can be gathered by modelling intrin-
sic properties of an image, then using these properties to identify
tampering. Similarly, a detection scheme can be designed by iden-
tifying traceable statistical artifacts left behind by an image altering
operation.

In order to determine if an image has undergone any form of
alteration, the use of a wide variety of operations must be tested
for. Existing image forensics work has dealt with the detection of
resampling [3] [2], luminance nonlinearities [2], and the tracing of
an image’s compression history[4] [5]. In addition, methods have
been proposed to detect the use of a tamper filter, as well as estimate
its coefficients by exploiting properties of color filter array interpo-
lation [6] [7]. While the parameterization of gamma correction has
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been studied in [2] and [8], a detection scheme is not fully developed
and tested. Furthermore, no prior work has addressed the problem
of blindly detecting more general contrast enhancement operations.

In this paper, we propose a blind forensic algorithm for detecting
the use of global contrast enhancement operations on digital images.
Contrast enhancement operations can be viewed as nonlinear pixel
mappings which introduce artifacts into an image’s histogram. By
modeling digital images as the output of a digital capture device (i.e.
excluding computer generated images), we may infer several proper-
ties of an unaltered image’s histogram, which can be used to detect
contrast enhancement artifacts. Furthermore, we propose an algo-
rithm for identifying the use of histogram equalization, a commonly
implemented contrast enhancement operation. Again, this algorithm
operates by seeking out the unique artifacts left behind by histogram
equalization.

2. SYSTEM MODEL

We model digital images as the output of the following image cap-
ture process. First, the color values of a real world scene are sampled
by using an electronic device to measure the average reflected light
intensity over each pixel’s area. Inherent in this process is the ad-
dition of some zero mean observational noise, largely due to noise
within the electronic sensor. The light intensity measurements are
then quantized, after which some postprocessing may occur. Finally,
the output of this process is stored as the unaltered image.

For any digital image, a histogram h(x) of its pixel values x
can be calculated by creating B equally spaced bins which span the
range of possible pixel values and tabulating the number of pixels
whose value falls within the range of each bin. For the purposes of
this work, we consider pixel values to consist of integers on the range
of 0 to 255, and images to be grayscale in nature. Unless otherwise
specified, we assume that all image histograms are calculated using
256 bins so that each bin corresponds to a unique pixel value.

The effect of sampling on an image’s histogram can by under-
stood by examining the scenario depicted in Fig. 1. In this figure, a
scene consisting of two different color regions is depicted. The bor-
der between these two regions does not align with the pixel bound-
aries of the digital capture device. Because of this, pixels lying along
the color border cover areas containing both color values present. As
a result, these observed pixel values will lie somewhere in between
those corresponding to each true color. This will effectively ‘smooth
out’ an image’s histogram

Several other phenomena contribute to the ‘smoothness’ of an
image’s histogram as well. The complex nature of most natural and
man made lighting environments rarely result in a real world scene
consisting several distinct colors with no shading. Instead a con-
tinuum of color values and illumination levels exist in real world
scenes. In addition, if the observational noise present in the image
capture process is sufficiently large, some pixels will incorrectly be
observed as a slightly higher or lower pixel value than the correct



Fig. 1. Sampling effects example.

one.
We model the histogram of an unaltered image as a digital func-

tion which approximately conforms to a smooth envelope. It is worth
explicitly stating that our model assumes that if h(x) À 0, then
h(x − 1) 6= 0 and h(x + 1) 6= 0, or in other words an unaltered
image’s histogram should not abruptly transition to or from zero.
This ‘smooth’ histogram model plays an important role in both of
our proposed detection algorithms.

3. PROPOSED CONTRAST ENHANCEMENT DETECTION
ALGORITHM

A global contrast enhancing operation T (x) can be viewed as a non-
linear mapping of pixel values, followed by quantization. These non-
linear mappings can be separated into regions where the mapping
is locally contractive or expansive. A mapping f is contractive if
d(f(x), f(y)) < d(x, y) and expansive if d(f(x), f(y)) > d(x, y),
where d(•) is some distance measure. When followed by quanti-
zation, contractive mappings can map multiple unique input pixel
values to the same output value, resulting in the addition of sudden
peaks to an image’s histogram. Similarly, expansive mappings can
cause output pixel values to be skipped over, resulting in gaps in an
image’s histogram. These effects are clearly seen in the plots at the
top of Fig. 2 which show the histograms of an unaltered image and
an image that has undergone contrast enhancement.

The peaks and gaps introduced into an image’s histogram are
contrast enhancement artifacts which we use to perform detection.
To do this, we exploit the fact that the Fourier transform of an un-
altered image’s histogram H(ω) should be strongly low pass in ac-
cordance with the smooth histogram model discussed in the previ-
ous section. The sudden peaks and gaps introduced into h(x) as a
product of contrast enhancement result in the addition of a high fre-
quency component to H(ω) as can be seen in the bottom two plots
in Fig. 2. Our detection algorithm operates by obtaining a weighted
measure F of an image histogram’s high frequency component and
performing a threshold test to determine if contrast enhancement has
occurred.

There does exist one class of naturally occurring unaltered im-
ages, which we will refer to as high end or low end saturated, which
result in an H(ω) with a substantial high frequency component.
High end saturation occurs when an image is captured under bright
lighting conditions and many of the observed light intensities lie well
above the cutoff for the highest quantization level. This results in a
substantial number of pixels taking on a value of 255, thus creating
a sharp peak which resembles a unit impulse. Similarly, low end
saturation arises in images taken in dark lighting environments and
corresponds to an impulsive peak at the pixel value 0. This is prob-
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Fig. 2. Top Left: Histogram of an unaltered image. Bottom Left: Magni-
tude of the Fourier transform of the unaltered image’s histogram. Top Right:
Histogram of an image which has undergone histogram equalization. Bot-
tom Right: Magnitude of the Fourier transform of the equalized image’s his-
togram.

lematic due to the fact that the Fourier transform of an impulse is a
constant function, which will in turn lead to a large value of F and
bias the detector towards deciding that contrast enhancement has oc-
curred. To combat this effect, we premultiply h(x) by a pinch off
function p(x) to obtain g(x) as follows

g(x) = p(x)h(x) (1)

p(x) =
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(2)

where the width of the pinch off region Np is typically around 4
pixels. This has the effect of deemphasizing any possible impulsive
components due to saturation in g(x).

We use g(x) to calculate the high frequency measure F accord-
ing to the formula

F =
1

N

∑
ω

|β(ω)G(ω)| (3)

where N is the total number of pixels in the image, G(ω) is the
Fourier transform of g(x), and β(ω) is a weighting function which
takes values between 0 and 1. The purpose of β(ω) is to deem-
phasize low frequency regions of G(ω) where nonzero values do
not necessarily correspond to contrast enhancement artifacts. In this
work, we use the simple cutoff function:

β(ω) =

{
1 |ω| ≥ c
0 |ω| < c

(4)

where c is a user specified cutoff frequency. A threshold test is then
performed, with values of F greater than the decision threshold η
corresponding to the detection of contrast enhancement.

The proposed contrast enhancement detection algorithm can be
summarized as follows:

1. Obtain the image’s histogram, h(x).
2. Calculate g(x) using (1).
3. Transform to the frequency domain and obtain the high fre-

quency measure F according to (3).
4. Apply a threshold test to determine if contrast enhancement

has occurred.



4. PROPOSED HISTOGRAM EQUALIZATION
DETECTION ALGORITHM

If contrast enhancement is performed using histogram equalization,
a unique set of traceable artifacts are left behind in addition to those
previously discussed. To understand what these artifacts are, we
must first briefly consider how histogram equalization is performed.
Histogram equalization attempts to increase the contrast of a digital
image by generating a mapping such that the histogram of the output
image is approximately uniformly distributed. This is accomplished
using the following mapping

T (x) = round

[
255

x∑
y=0

h(y)

N

]
(5)

where N is the total number of pixels in the image. Our proposed
histogram equalization detection algorithm operates by determining
the distance of an image’s histogram from a uniform distribution.

Histogram equalization, like any other contrast enhancement op-
eration, introduces sudden peaks and gaps into an image’s histogram.
This makes detection in the pixel domain rather problematic, be-
cause if we measure the distance of the histogram from a uniform
distribution through some simple metric D′ such as

D′ =
∑

x

| h(x)− N

255
| (6)

the peaks and gaps introduced will increase the value of D′. De-
tection is in fact better suited for the frequency domain, where the
artifacts unique to histogram equalization can be separated from the
artifacts which arise from the use of any general contrast enhance-
ment operation.

The frequency domain representation of a constant function is
an impulse δ(ω) centered at ω = 0. Using this fact, we obtain a fre-
quency domain measure of the distance D of an image’s histogram
from a uniform distribution according to the formula

D =
1

N

∑
ω

(δ(ω)− |H(ω)|) α(ω) (7)

Here α(ω) is a weighting function used to deemphasize high fre-
quency regions of H(ω). This is necessary because as a contrast en-
hancing operation, histogram equalization will add a high frequency
component to H(ω), thus artificially increasing the value of D. If
this effect is not properly compensated for with α(ω), several missed
detections could occur. In this work we use

α(ω) = exp(−r|ω|) (8)

where r is a user specified parameter.
As discussed before high and low end saturated images create

detection problems due to the constant offset they add in the fre-
quency domain. To mitigate this problem, we exploit histogram
equalization artifacts unique to these types of images. For low end
saturated images, we may safely assume that the impulsive nature of
the histogram will cause the number of pixels in the lowest bin to
be greater than 2N

255
. When histogram equalization is performed, the

input gray level x = 0 is mapped to an output value of T (0) ≥ 2
because

T (0) = round

[
255

x=0∑
y=0

h(y)

N

]

≥ round

[
255

(
2

255

)]
= 2 (9)

We may therefore conclude that histogram equalization has occurred
if h(x′) ≥ 2N

255
and x′ ≥ 2, where x′ is the lowest pixel value for

which h(x′) ≥ 0.
Similarly, for high end saturated images we can assume that

h(255) ≥ 2N
255

. When histogram equalization is performed, the in-
put gray level x = 254 will be mapped to T (254) ≤ 253 according
to

T (254) = round

[
255

x=254∑
y=0

h(y)

N

]

= round

[
255

(
1− h(255)

N

)]

≤ round

[
255

(
2

255

)]
= 253 (10)

Using this information, we can conclude that histogram equalization
has occurred if h(255) ≥ 2N

255
and x′′ ≤ 253, where x′′ is the largest

value of x such that x′′ < 255 and h(x′′) > 0. We refer to detection
by this means as the saturated image histogram equalizataion test.

The proposed histogram equalization detection procedure can be
summarized as follows:

1. Obtain the image’s histogram, h(x).

2. Perform the saturated image histogram equalization test,
where histogram equalization is determined to have occurred
if h(x′) ≥ 2N

255
and x′ ≥ 2, or h(255) ≥ 2N

255
and x′′ ≤ 253.

3. If histogram equalization is not yet detected, calculate D us-
ing (7).

4. Determine if histogram equalization has occurred by compar-
ing D to some threshold η, where D < η corresponds to
detection.

5. SIMULATION AND RESULTS

To evaluate the performance of each detection algorithm, an image
database was compiled consisting of 341 images captured using sev-
eral different digital cameras. These images consist of a variety of
different subjects, ranging from landscapes to buildings to people,
and were taken under varying lighting conditions.

5.1. Contrast Enhancement Detection

In order to test the contrast enhancement detection algorithm, each
image was altered using the power law transformation

T (x) = 255
( x

255

)γ

(11)

with γ values ranging from 0.5 to 2.0. Additionally, each image was
subjected to the mapping displayed at the top left of Fig. 3, which
was designed to bring out detail in the brightest and darkest regions
of each image. These altered images were then combined with the
original set of images to form a test database of 4092 images. The
proposed detection algorithm was used to determine if each image
in the test database had undergone some form of contrast enhance-
ment. In this simulation, β(ω) was chosen to be of the form specified
in (4), with the cutoff parameter parameter c = 7π/8. The proba-
bilities of detection Pd and false alarm Pfa were determined for a
given threshold η by calculating the percent of correctly classified
altered images and the percent of incorrectly classified unaltered im-
ages respectively. These probabilities were then used to construct a
series of receiver operating characteristics (ROC) curves.
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Fig. 3. Simulation results for the contrast enhancement detection scheme. Far Left: Additional contrast enhancement mapping used in the simulation. Center
Left: ROC curves obtained for images altered by a power law transformation with 0.5 ≤ γ ≤ 0.9, as well as the mapping displayed in the top left. Center
Right: Additional ROC curves obtained for images altered by a power law transformation with 1.2 ≤ γ ≤ 2.0. Far Right: Probabilities of missed detection
and false alarm vs. detection threshold η for images altered by a power law transformation with γ = 0.6.
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Fig. 4. Simulation results for the histogram equalization detection scheme. Left: ROC curve. Center: Probability of missed detection vs. detection threshold.
Right: Probability of false alarm vs. detection threshold.

Fig. 3 shows the ROC curves obtained by the proposed detection
algorithm. Additionally, Fig. 3 contains a plot displaying the Pfa

and Pm (probability of missed detection) with respect to the the de-
cision threshold for different values of the cutoff parameter c when
the images were manipulated with γ = 0.6. As can be seen from
the ROC curves, the detection algorithm performs extremely well
against all values of γ tested, as well as the mapping displayed at the
far left section of Fig. 3. It should be noted that in every case, a Pd of
0.99 was achieved with a Pfa of roughly 0.03 or less. Furthermore,
the plot of Pfa and Pm vs. η indicates that performance improves as
c is increased, with the best performance obtained using the largest
value of c for which the algorithm was tested. This reinforces the no-
tion that for unaltered images H(ω) is a strongly lowpass signal, and
that contrast enhancement introduces a high frequency component to
H(ω).

5.2. Histogram Equalization Detection

To test the histogram equalization detection algorithm, a setup sim-
ilar to the one for test the contrast enhancement detection algorithm
was used. Each unaltered image was subjected to histogram equal-
ization using (5), then the equalized images and the unaltered orig-
inals were combined to form a test database of 682 images. The
proposed histogram equalization detection algorithm was used with
to determine if each image had undergone histogram equalization.
This was performed multiple times using α(ω) as defined in (8) with
r taking values between 6 and 11. The values of Pd and Pfa were
calculated in the same manner as was used when evaluating the con-
trast enhancement detection algorithm.

Plots showing the ROC curves obtained for each value of c used,
as well as Pfa and Pm with respect to η are shown in Fig. 4. When r
was chosen to be 10 or 11, perfect detection (Pd = 1 with Pfa = 0)
was obtained using the threshold value η = 1.5. In addition, near
perfect detection was achieved

6. CONCLUSION

In this work we propose two new blind forensic algorithms to detect
image alterations in the form of global contrast enhancement oper-
ations in general, and histogram equalization specifically. We con-
struct a model for the histogram of an unaltered image, and use prop-
erties of this model to detect alteration artifacts left behind by both
considered operations. Through simulation, we show the efficacy of
both detection algorithms, obtaining Pd > 0.99 with a correspond-
ing Pfa ≤ 0.03 using our contrast enhancement detection algorithm
and perfect detection using our histogram equalization detection al-
gorithm.
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